
Risk Assessment and Mitigation

Team 26

devCharles

Ross Holmes

Sabid Hossain

Thomas Pauline

Joel Paxman

Andrey Samoilov

Louis Warren

Introduction

One of the purposes for creating this document was to increase our “bus factor”. The necessity of a

document like this is clearly shown in our own group:

During the beginning of our project we decided to start work on the website and part way through

development we planned a meeting to develop it further, however a critical team member was unavailable.

Due to the fact that we had already implemented this document and discussed mitigations we had three

team members capable of understanding and continuing development which still made the meeting

productive.

We created a risk document within our first few team meetings, discussed some immediate risks, how we

would mitigate this and wrote it down. This was regularly added to when we held meetings twice a week in

which we discussed progress and identified new risks; however we soon realised we needed to create a

better system as the document grew. We decided to create a tabular system as we felt this was more

succinct and readable than any other form (e.g. textual).

The risk assessment and mitigation document is therefore presented in the risk register, which is formatted

as three tables:

● Project - these are risks that may affect the project's schedule or the resources used by the project

(including team members).

● Product - these are risks that would affect the product quality or its ability to be fully completed

e.g. tools in the project having bugs outside of our control.

● Business - these are risks that would affect the team's ability to procure/develop the software e.g.

obsolete technology.

Each risk within each table is given:

● ID - Each risk has a unique identifier to allow for simple referencing and identification.

● Description - This is a description of the risk.

● Likelihood - This is how likely the risk is to occur - i.e. low, moderate, high.

● Severity - Should the risk happen this is an estimate of how much of an effect it would have again

given as either low, moderate or high (Variable shows unknown impact).

● Mitigation - These are the steps we are taking to mitigate the risk, or steps to be taken in case of

the risk occurring.

● Owner - This column indicates who is responsible for mitigating the risk and reporting an issue to

the group if there’s a problem. This prevents risks from repeating (All team members are made

aware of risks which also means that in rare cases where the owner doesn’t see the risk first the

issue can be still found quickly).

As we continued with our meetings twice a week (generally), more risks were identified and added to the

risk register. We then discussed their likelihood and severities, and categorised them. We worked together

to come up with and implement ways in order to mitigate or avoid each risk. We would then assign an

owner to each risk.

Something significant we did was to assign at least two people to all tasks deemed very important and we

also (for these tasks) assigned a shadow role (somebody who had no responsibility for the task but was

made aware so that they could provide aid for any issues). This meant our ‘bus factor’ was never below 2

and with important tasks never below 3. This meant we could be prepared for as many issues as possible

and meant very few unexpected issues occurred.

Project Table

ID Description Likelihood Severity Mitigation Owner

R1 A team member becomes

unavailable due to illness or

other issue

moderate moderate Make sure work is evenly distributed

between team members and that

everything has at least two people

who are familiar with with each part

of the project

Ross,

Andrey,

Louis

R2 The game engine becomes

unavailable

low high Be aware of other game engines that

are available to switch to

Louis

R3 Team member's knowledge

of the codebase is not

enough to contribute

high moderate Arrange a meeting to discuss the

codebase with the team member

Andrey

R4 A file is accidentally deleted

or corrupted

low high Keep updating the remote repository

with github

Ross

R5 Something isn’t completed

by the deadline set for it

moderate moderate Have regular meetings where the

progress of the project is discussed

Louis

R6 Discord, our main

messaging tool, goes down

low high Make sure we have multiple ways of

contacting each other (e.g. via e-

mails)

Joel

R7 A team member does not

have the correct version of

our dependencies, and

therefore cannot contribute

to the implementation

moderate low Make use of centralised dependency

management (Gradle) and make sure

everyone's base JDK is the same

version

Andrey

R8 A team member’s computer

breaks

moderate moderate Make sure everyone has access to

another computer they can work on

if necessary (e.g uni computers)

Tom

R9 The assets we used become

unavailable

low moderate Be aware of places to get new assets

from

Sabid

R10 Github goes down for a

brief period (during a heavy

development period)

low high Properly space out working times

such that any impact over a certain

period of time is minimised.

Joel

R11 A group member commits

directly to main, losing

changes made by others or

introducing merge conflicts

Low Variable Lock the main branch to only accept

github pull requests from other

branches.

Andrey

R12 Fail to clarify everything

during a client

meeting

low moderate Contact the client to further clarify

details.Prepare questions in advance

in order to be sure of having every

Sabid

ID Description Likelihood Severity Mitigation Owner

required detail.

R13 Team member's computer

crashes losing unsaved

changes

low moderate Regularly commit changes to the

local source control system

Sabid

R14 Prerequisite code is

unfinished, so sections

cannot be completed

moderate moderate Prompt the owner of the required

code to finish

and begin a different section instead.

Andrey

R15 Requirements being added

during Project progress

(Scope Creep)

low moderate Get a clear understanding of what

the client wants at the beginning of

the Project

Everyon

e

Product Table

ID Description Likelihood Severity Mitigation Owner

R16 The implementation has a

progress halting issue

low moderate Help the team member resolve the

problem

Andrey

R17 The game runs slowly on

certain computers

low moderate Test the game on multiple

computers with different

specifications, and make changes if

necessary

Joel

R18 The libraries used in the

implementation don’t
have/don't have enough

documentation, and the

team is struggling to

implement them

high moderate Check documentation of libraries

prior to picking them to be used in

the project, if that's not possible

look for alternative material (e.g.

open source projects using the

library)

Ross

R19 The game doesn’t resize well

to some window sizes

moderate moderate Test the game in various common

window sizes and make changes if

necessary

Andrey

R20 Part of our code accidentally

infringes upon someone's

copyright

low Variable Depending on how the infringing

code is licensed, the code can be

kept as is with a copyright notice, or

removed entirely if the licence is not

compatible with the project

Tom

R21 Update to a library we are

currently using that is

incompatible with current

code implementation

low moderate Only use libraries when required,

and use libraries that are well known

and available (trustworthy)

Ross

R22 Architecture does not

support a required feature

moderate high Consider all possible architectures

with their advantages and

drawbacks.

Andrey,

Louis,

Ross

R23 Hosting service becomes

unavailable

moderate moderate Prepare alternative hosting

methods, including private servers.

Tom

R24 Compromising on design to

complete function as quick

as possible

low moderate Regularly check non-functional

requirements during development.

Joel

R25 Lack of support for users

post completion

high low Design simple to understand

interface and provide clear

instructions

Tom

R26 Bugs in code that are difficult

to detect but appear with

frequent use

moderate moderate QA / test to decrease frequency of

issues

Louis,

Ross

Business Table

ID Description Likelihood Severity Mitigation Owner

R27 The software does

not perform well on

client's computer

moderate high Make sure we use optimised

libraries and the codebase is overall

efficient with its resources. Clarify

with client about specifications of

machines expected to run the game

Everyone

R28 University pauses

teaching due to

industrial action

moderate high Access alternative teaching material Everyone

	Introduction

