
Requirements

Group 26

devCharles

Ross Holmes

Sabid Hossain

Thomas Pauline

Joel Paxman

Andrey Samoilov

Louis Warren

Introduction
User requirements were elicited from the assessment brief given to us which was then followed by a

client meeting, in which we asked for specifics on details included in the assessment brief.

Within the assessment brief we were given a SSON (Single statement of need):

“You are to build a single-player game that requires managing the staff around a kitchen, who will be

preparing various dishes requested by customers coming into the Piazza Restaurant”. This paired

with information given in the rest of the assessment brief and the client meeting allowed us to

create a complete list of requirements which was split into user requirements and system

requirements:

● User requirements are for non-technical people involved in the process and is a list of tasks

that users should be capable of doing within the system.

● System requirements details the technical implementation including a description of how

the system will deliver the needs of the users. (System requirements is further broken down

into functional and non-functional requirements):

○ Functional requirements are things the system must do

○ Non-functional requirements are qualities the system must have

The notation we chose to represent requirements was Easy Approach to Requirements Syntax

(EARS). (Alternate link / description: https://www.jamasoftware.com/requirements-management-

guide/writing-requirements/adopting-the-ears-notation-to-improve-requirements-engineering)

This was chosen as it reduces subjective language when reading through the requirements and it

remains consistent and easy to read. It is also widely used in industry and in universities so it should

be understood by most individuals.

The requirements are presented within three tables (User, Functional, Non-functional). This was

decided as it is clearer and more succinct than any other presentation (e.g. textual). With this

approach each requirement can be given a unique key (ID), which then can make documentation for

architecture easier as requirements may be referenced by their ID’s.

Each User Requirement is given a priority:

● Shall - must be fully implemented (Highest priority)

● Should - should be fully implemented but isn’t strictly required(Medium priority)

● May - an optional element that would be desirable but is not necessary (Low Priority)

The functional requirements table is partially or wholly explained by a user requirement, so each of

these will link back to the first table. Along with this fit requirements have been added, highlighting

the specific criteria for the non-functional requirements to be classes as fully implemented without

issues.

https://alistairmavin.com/ears/
https://www.jamasoftware.com/requirements-management-guide/writing-requirements/adopting-the-ears-notation-to-improve-requirements-engineering
https://www.jamasoftware.com/requirements-management-guide/writing-requirements/adopting-the-ears-notation-to-improve-requirements-engineering

User Requirements

ID Description Priority

UR_SYS_REQ The game must be able to run on most computers Shall

UR_USER_AGE The game must be designed for anyone from age 5+ Shall

UR_GRAPHICS

The game should be designed so that different assets are very clearly

distinguishable Should

UR_GAME_SIMPLE

The game should be very simple to use and play so that almost anyone can

immediately be capable of understanding it Should

UR_EXHIBIT The game is to be designed for a high flow of users Should

UR_SINGLE The game should be single player e.g. offline Shall

UR_DOC

The game should be completely documented so that the team taking on this game

will be able to continue to develop it Should

UR_TOOLS

Everything used in the game needs to be open source, so that if this game is shared

there are no issues with copyright Shall

UR_GAME_PLAY

This should be a game in which you have to cook some food to then deliver to a

customer Shall

Functional Requirements

ID Description User Requirements

FR_CONTROLS The controls shall be exclusively mouse and keyboard UR_GAME_SIMPLE

FR_STATION_NUMBERS

The user shall have access to 2 cooking and ingredient stations for

each cook (4 in total e.g. 2 chopping boards and two friers) UR_GAME_SIMPLE

FR_COMPLETION

When all orders are completed, the scenario shall end (There is only

one scenario in which there are 5 orders) UR_GAME_PLAY

FR_TIMING The game shall take approx. 5 minutes, due to high flow of users UR_EXHIBIT

FR_CUSTOMERS

While a customer has an order, they shall be visible somewhere on

the screen UR_GAME_PLAY

FR_RECIPES There shall be 2 recipes, salad and burger UR_GAME_PLAY

FR_COOKING_STATIONS

The cooking stations shall enable preparation of ingredients - for

example cutting board for lettuce, or grill for patty UR_GAME_PLAY

FR_COOKS

The player shall have access to 2 cooks which the player can switch

between and which the player can move UR_GAME_SIMPLE

FR_INGREDIENT_STATIONS

The user shall have access to unlimited amounts of the specified

ingredient from the ingredient station UR_GAME_PLAY

FR_CUSTOMER_FLOW

Customers shall arrive one at a time in intervals, and when a

customer has been served the next customer shall become the first in

line. UR_GAME_PLAY

FR_COMPLETION_TIME The game shall return the time taken to serve all 5 customers UR_TIMING

FR_MENU The game shall have a simple start menu UR_GAME_SIMPLE

FR_COMPLETION_TIME_LIMI

T

When the customer has not been served within a given time limit, the

user shall lose 1 reputation point (from a maximum of 3) UR_TIMING

FR_COLLISIONS

The entities in the game shall not overlap, (e.g. basic physics should

apply to the game) UR_GAME_SIMPLE

FR_RECIPE_BOOK

The game shall have some way to see the recipe that the customers

have asked for at all times UR_GAME_SIMPLE

FR_COUNTER

When a dish is complete, the dish shall be able to be delivered by

being placed on the counter UR_GAME_PLAY

Non Functional Requirements

ID Description

User

Requirements Fit Criteria

NFR_SINGLE_PLAYE

R The game shall be offline and single player UR_SINGLE

The game should have no capability

whatsoever of connecting to the internet

NFR_GAME_SIMPL

E

The game shall be very easy to “pick up

and play” so almost all new players should

immediately be capable of playing

UR_GAME_SIMPL

E

The game should be immediately

understandable, intuitive and by at least

95% of new players (they should all

understand its concepts and the games

goals)

NFR_SYS_REQ

The game shall be designed for a standard

computer, without any special hardware. UR_SYS_REQ

The game should be able to run on any

computer with 4gb of ram a minimum of an

i3 (7th gen or equivalent) and at least 5 gb

of free storage

NFR_USER_AGE

The game shall have no reference to

swearing, violence or any graphic content UR_USER_AGE

This game should aim to not offend a

minimum of 99.5% of individuals playing

this game and should be playable by anyone

of any age (including children)

NFR_CONTRAST

The games assets shall be clearly

discernible UR_GRAPHICS

The game should still be playable by those

who are colour blind

NFR_APROACHABL

E

The game shall be appealing to a wide

demographic of users

UR_USER_AGE

UR_GRAPHICS

95% of Individuals aged 5-80 should be able

to look at the game and agree that it is

appealing and have a desire to play it

NFR_DOCUMENTAT

ION

The game shall be documented

completely, with comments explaining

lines of code and java docs for classes UR_DOC

The game should be documented well

enough so that other teams would be

capable of choosing this code base to

continue to develop into assessment 2 and

not need to use the internet to a significant

degree to understand the code

NFR_SCREEN_RES

The game shall run on different resolution

screens UR_SYS_REQ

The game should be capable of running on a

screen resolution of a minimum of 640*480

pixels up to any resolution

NFR_DOC_MAINTA

NABILITY

The documented code shall be easily

maintainable in case of further

developments UR_DOC

Code should aim to be as “modular” as

possible so that new features can be quickly

implemented and designed

NFR_TOOLS

All libraries, assets and code shall be open

source UR_TOOLS

The entire game should be open source as it

will need to be shared and distributed.

Therefore anything that is licensed must be

able to be shared and distributed by the

university and its students.

